$\log_2(128) = x$	x=7	$\log(10^6) = x$	x=6
$\log_x(25) = 2$	x=5	$\log(x) = 5$	x=10 ⁵
$\log_2(0.125) = x$	x=-3	$\log_3(\frac{1}{9}) = x$	x=-2
$\log_{\sqrt{3}}(x) = 4$	x=9	$\log_9(3) = x$	x=0.5
$\log_x(64) = 3$	x=4	$\log_x(64) = 6$	x=2
$\ln(e^7) = x$	x=7	$\log_x(e^3) = 3$	x=e
$\ln(x) = 8$	$x = e^8$	$e^{\ln(e^9)} = x$	$x = e^9$
$\ln(1) = x$	x=0	$\log(x) = 1$	x=10

$\log_3(6) =$	$1 + \log_3(2)$	$\log_3(\sqrt{5}) =$	$\frac{1}{2} \cdot \log_3(5)$
$-\log_2(5) =$	$\log_2(0.2)$	$\log_3(\frac{x^3 \cdot y}{z^2}) =$	$3\log_3(x) + \log_3(y) - 2\log(z)$
$\log_3(x^{-3}yz^2) =$	$-3\log_3(x) + \log_3(y) + 2\log_3(z)$	$\log_3(5) =$	$\frac{\log(5)}{\log(3)}$
$\log_3(\frac{x}{y}) + \log_3(\frac{x^2y^2}{z}) =$	$3\log_3(x) + \log_3(y) - \log_3(z)$	$\log_x(9) \cdot \log_3(x) =$	$\frac{2\log 3 \cdot \log x}{\log x \cdot \log 3} = 2$
$\log_x(\frac{1}{\sqrt{x^3}}) =$	$-\frac{3}{2}$	$\log_x(\sqrt[3]{x^2}) =$	$\frac{2}{3}$
$\log_3(3^2)^{-4} =$	-8	$\log_2(\frac{1}{3}) =$	$-\frac{\log(3)}{\log(2)}$
$\log_3(2) =$	$\frac{\log(2)}{\log(3)}$	$\log_3(2^{-1}) =$	$-\frac{\log(2)}{\log(3)}$